the Energy to Lead

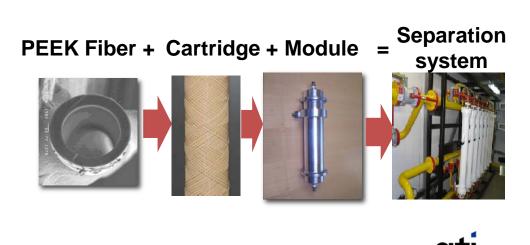
Hybrid Membrane/Absorption Process for Post-combustion CO₂ Capture

DOE Contract No. DE-FE-0004787

S. James Zhou, Shiguang Li, and Howard Meyer, *GTI* Yong Ding and Ben Bikson, *PoroGen*

NETL CO₂ Capture Technology Meeting July 10, 2013

Introduction to GTI and PoroGen

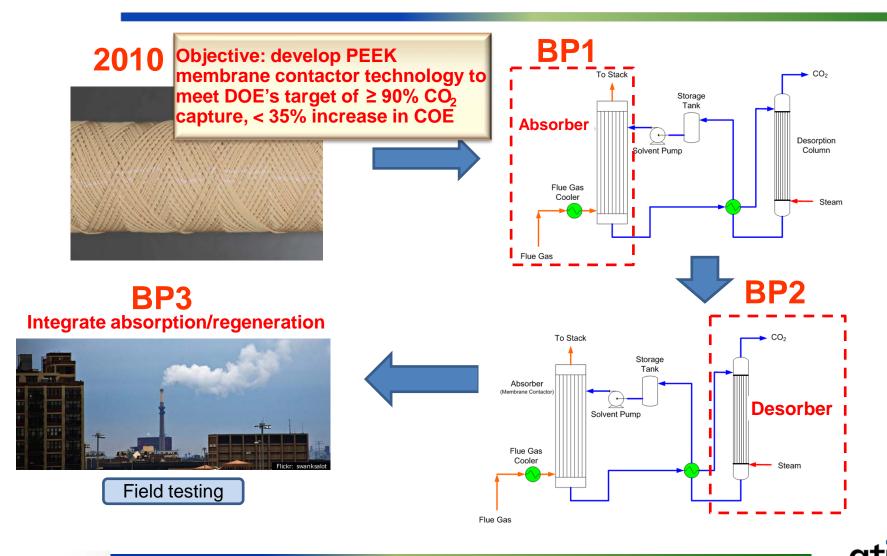

gti

- Not-for-profit research company, providing energy and natural gas solutions to the industry since 1941
- Facilities
 - 18 acre campus near Chicago
 - 200,000 ft², 28 specialized labs

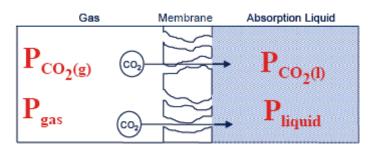
- Materials technology company commercially manufacturing products from high performance plastic PEEK (poly (ether ether ketone))
- Products ranging from membrane separation filters to heat transfer devices

Project overview

- Funding: \$3,736 K (DOE: \$2,986 K, Cost share: \$750 K)
 - BP1 budget: DOE: \$799 K, Cost share: \$200 K (20%)
 - BP2 budget: DOE: \$1,036 K, Cost share: \$262 K (20%)
 - BP3 budget: DOE: \$1,149 K, Cost share: \$287 K (20%)
- **Performance period**: Oct. 1, 2010 Dec. 31, 2013


Project participants:

- GTI: process design and testing
- PoroGen: membrane and membrane module development
- Midwest Generation: providing field test site

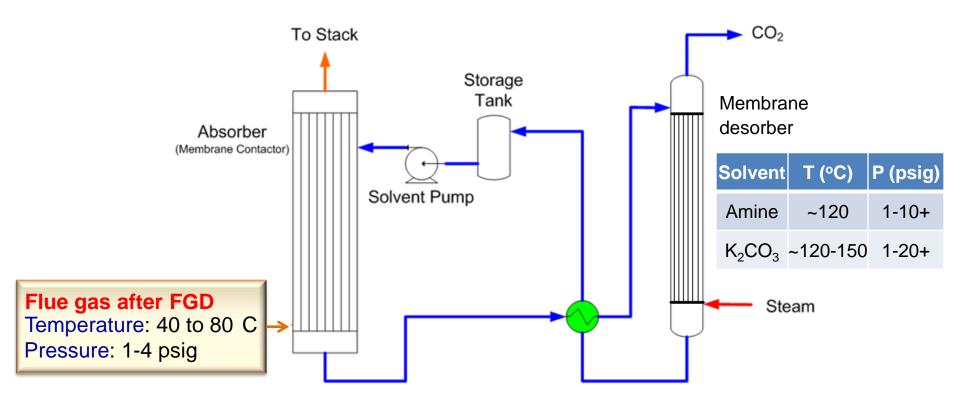

Objective and scope

What is a membrane contactor?

- High surface area membrane device that facilitates mass transfer
- Gas on one side, liquid on other side
- Membrane does not wet out in contact with liquid

5

 Separation mechanism: CO₂ permeates through membrane and reacts with the solvent; N₂ does not react and has low solubility in solvent


Comparison to conventional membrane process

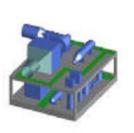
Membrane technology	Need to create driving force?	CO_2/N_2 selectivity (α)	Can achieve >90% CO ₂ removal and high CO ₂ purity in one stage?
Conventional membrane process	Yes. Feed compression or permeate vacuum required	Determined by the dense "skin layer", typically $\alpha = 50$	No. Limited by pressure ratio, multi-step process required*
Membrane contactor	No. liquid side partial pressure of CO ₂ close to zero	Determined by the solvent, $\alpha > 1000$	Yes

PoroGen

* DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update, May 2011

Process description

Process identical to DOE's benchmark technology amine plant except membrane absorber and desorber are used instead of absorption and regeneration towers



Membrane contactor has technical and economic advantages over conventional absorbers

Gas-liquid contactor	Specific surface area, (m²/m³)	Volumetric mass transfer coefficient, (sec) ⁻¹
Packed column (Countercurrent)	100 – 350	0.0004 - 0.07
Bubble column (Agitated)	100 – 2,000	0.003 - 0.04
Spray column	10 – 400	0.0007 - 0.075
Membrane contactor	1,000 – 7,000	0.3 – 4.0

Conventional Amine Scrubber Column

Membrane Contactor

Membrane contactor savings:

- Capital cost: 35%
- Operating cost: 40%
- Total operating weight: 47%
- Footprint requirement: 40%
- Height requirement: 60%

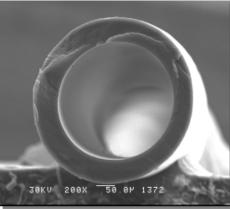
Data by Aker Process Systems*

7

Olav Falk-Pedersen, Developments of gas/liquid contactors, Final report GRI contract 8325, December, 2002.

Technical and economic <u>challenges</u> and advantages of membrane contactor

- Performance Minimize overall mass transfer resistance
- Durability Long-term membrane wetting in contact with solvent may affect performance
 - Improve membrane hydrophobicity
- Contactor scale-up and cost reduction
 - Make larger diameter module and reduce module cost Advantages:
 - Increased mass transfer reduces system size
 - High specific surface area available for mass transfer
 - Independent gas and liquid flow
 - No flooding, solvent entrainment, and foaming



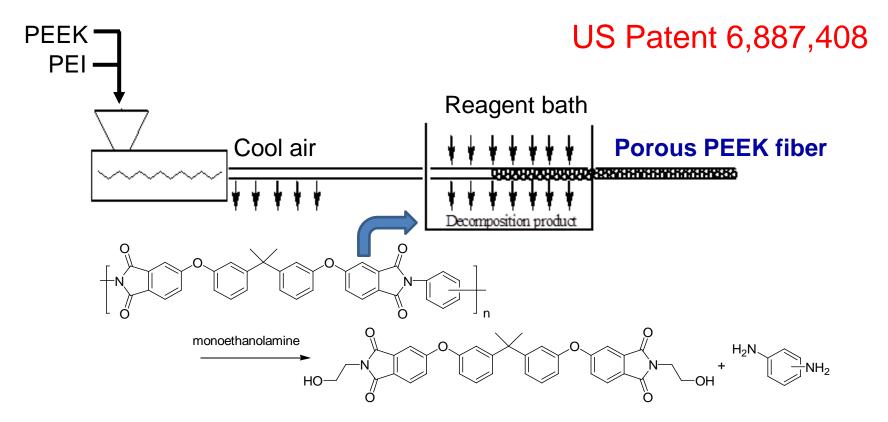
PEEK membrane can meet challenges

Exceptional thermal, mechanical & chemical resistance

Polymer	Tensile modulus (GPA)	Tensile strength (MPa)	Max service temperature (°C)
Teflon™	0.4-0.5	17-21	250
PVDF	0.8	48	150
Polysulfone	2.6	70	160
PEEK	4	97	271

- Hollow fiber with high bulk porosity (50-80%), asymmetric pore size: 1 to 50 nm, and thus high gas flux
 - Helium permeance as high as 20,000 GPU*

PoroGen

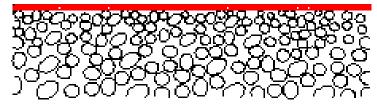

- Super-hydrophobic, non wetting, ensures independent gas & liquid flow under flue gas conditions
- Structured hollow fiber membrane module design with high surface area for improved mass transfer

9

*1 GPU = 1 x 10⁶ cm³ (STP)/cm² • s • cmHg

PoroGen has a patented process for preparation of nano-porous PEEK hollow fiber membrane

Hollow fiber morphology, and pore size are continuously improved to meet membrane contactor operating requirements



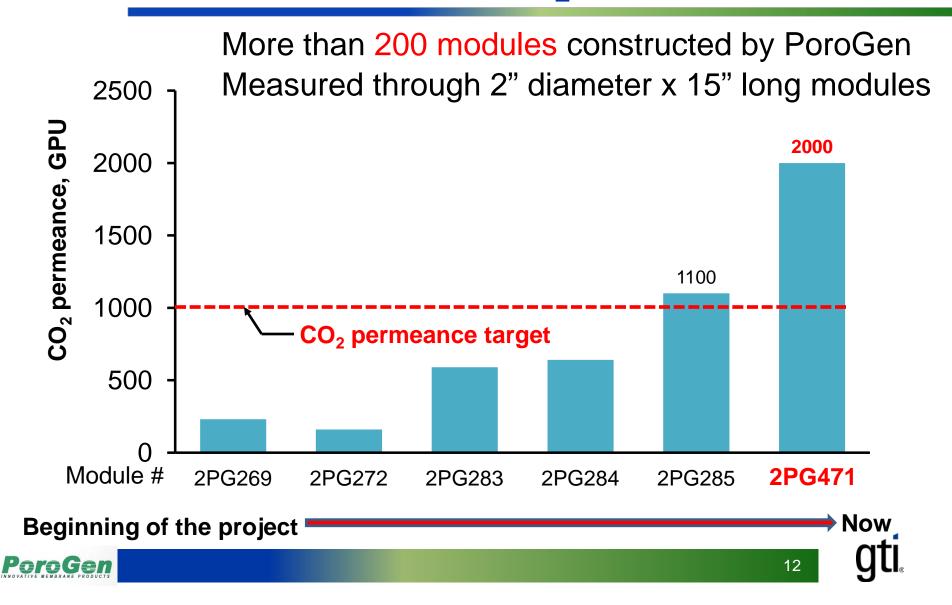
Super-hydrophobic membranes developed

Composite membrane

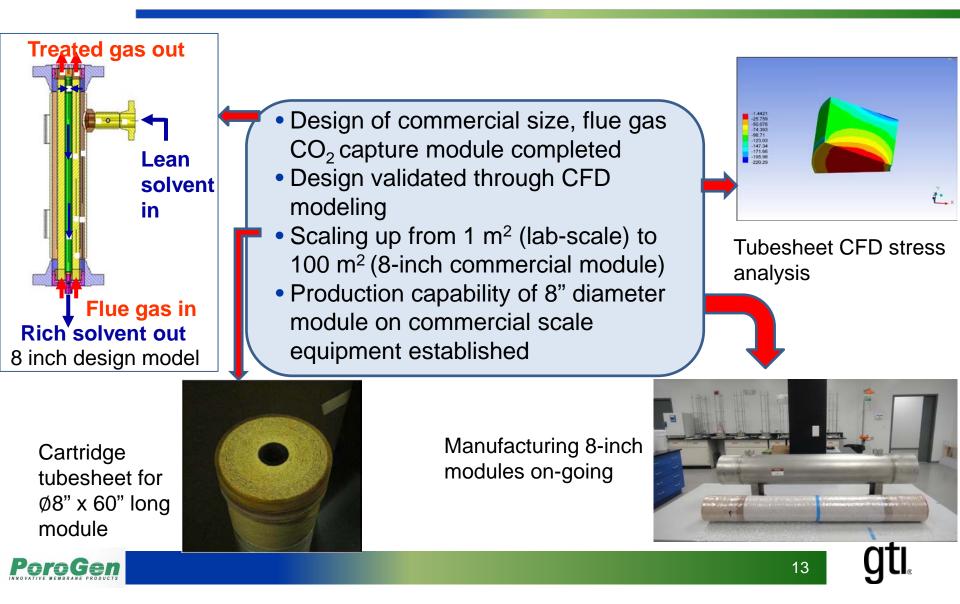
Thin layer (0.1 μ m) of smaller surface pores

Asymmetric porous structure

 Super-hydrophobic surface not wetted by alcohol



Alcohol droplet



Recent modules achieved 2,000 GPU membrane intrinsic CO₂ permeance

Membrane module design and scale-up

Module cartridge scale-up from bench to commercial

- 2" bench 1.2 ft²
- 2" bench 5 ft²
- 2" bench 50 ft²
- 4" field 250 ft²
- 8" commercial 1,000 ft²

BP1: Membrane Absorber Study

Bench-scale membrane absorber CO₂ capture performance testing

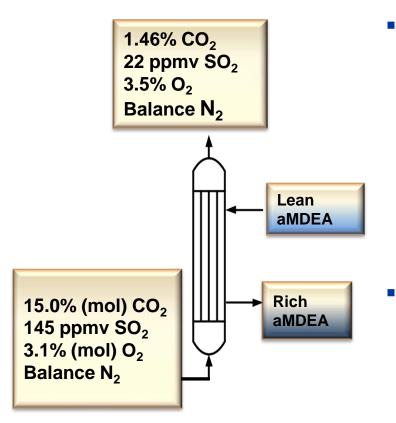
- <u>Feed</u>: Simulated flue gas compositions $(N_2 + CO_2)$ saturated H_2O , SOx, NOx, O_2) at temperature and pressure conditions after FGD.
- <u>Membrane module</u>: Performance can be essentially linearly scaled to commercial size modules
 - Uncertainty exists because gas/liquid contactor interface issues
 - Additional factors affect mass transfer coefficient
- <u>Solvents</u>: Commercial aMDEA (40 wt%) and activated K₂CO₃ (20 wt%), testing of advanced solvents planned
- Use of design of experiment test matrix: totally over 140 tests

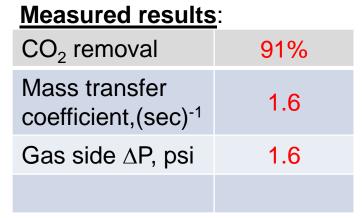
Activated methyldiethanolamine = aMDEA

Module for lab testing (Ø2" x 15" long, 1m²)

BP1 technical goal achieved with commercial aMDEA and K₂CO₃/H₂O

Module 2PG285, 1100 GPU


Parameters	Goal	aMDEA	K ₂ CO ₃
CO ₂ removal in one stage	≥ 90%	90%	94%
Gas side ΔP , psi	≤ 2	1.6	1.3
Mass transfer coefficient,(sec)-1	≥ 1	1.7	1.8



CO₂ removal rate is not affected by O₂ SOx, and NOx contaminants in feed

Module 2PG286, 1000 GPU

Compared to conventional amine scrubber

 15% less of the inlet SO₂ was absorbed by the solvent as compared with conventional column. The formation of heat-stable salts will be reduced.

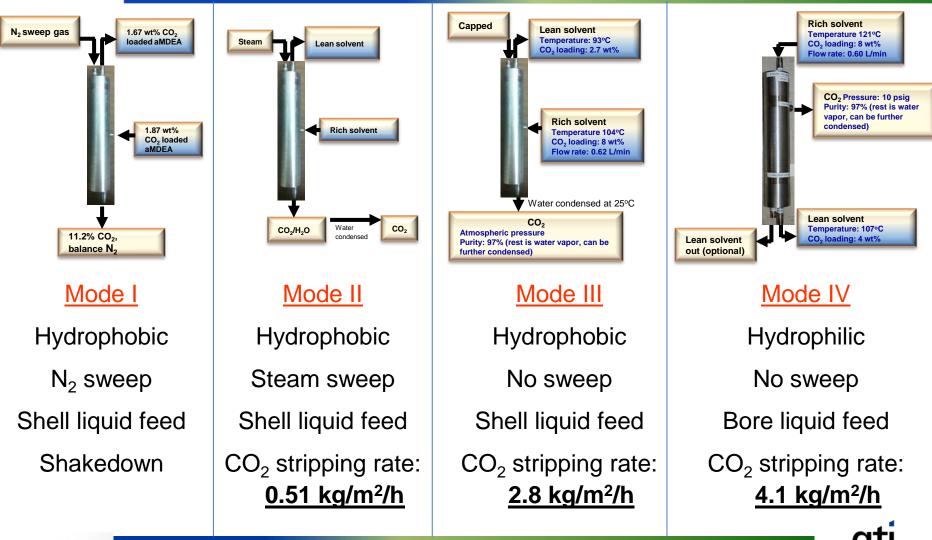
18

Another test showed CO₂ removal rate is not affected by NO_x

BP2: Membrane Desorber Study

qti

Bench-scale membrane desorber CO₂ stripping performance testing


- Membrane module: Performance can essentially be linearly scaled to commercial size modules
- Liquid feed: CO₂ loaded aMDEA and activated K₂CO₃ rich solvents, flow rate: 0.2-0.7 L/min
- Four flow configurations (Modes) investigated: over 80 tests

Module for lab testing (Ø2" x 15" long, 1m²)

Four regeneration modes of operation with aMDEA and K₂CO₃ solvents

BP2 technical goal achieved

Parameters	Goal	Mode III	Mode IV
CO ₂ purity	≥ 95%	97%	97%
CO ₂ stripping rate (kg/m ² /h)	≥ 0.25	2.8	4.1

gti

Economic evaluation bases

- Membrane module cost for commercial size (8-inch): \$80/m²
- CO₂ removal at 90% CO₂ using <u>1000 GPU</u> membranes
- DOE/NETL-2007/1281"Cost and Performance Baseline for Fossil Energy Plants"

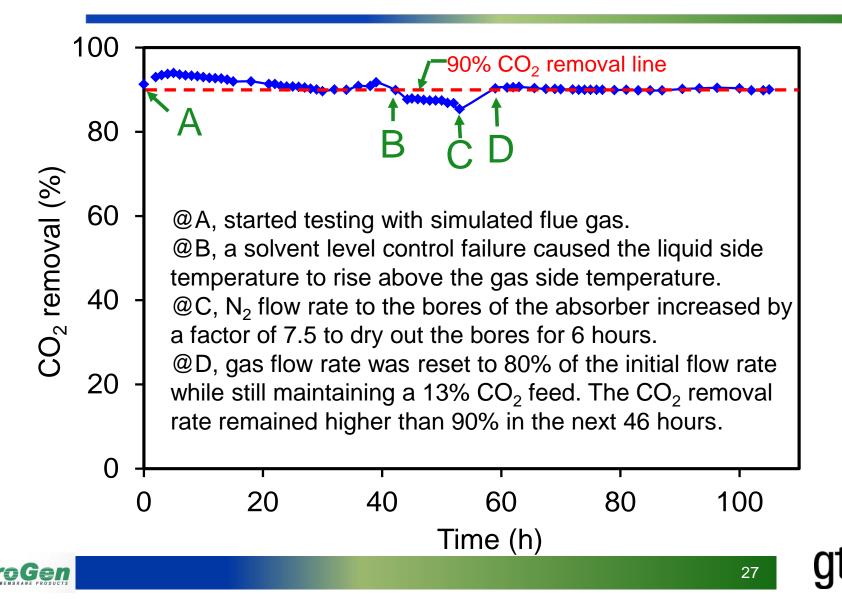
R&D strategy to meet DOE's target

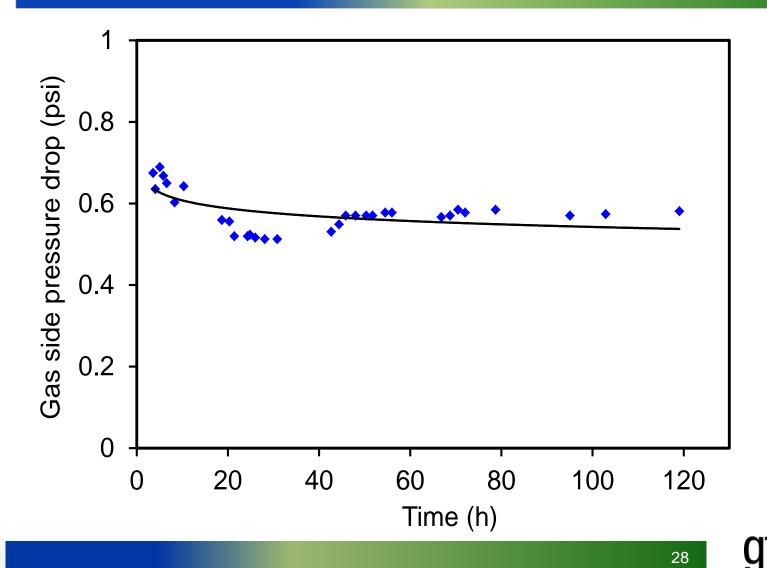
Case	COE, \$/MWhr	Increase in COE	\$/Tonne CO ₂ Captured*
DOE Case 9 no capture	64.00		
DOE Case 10 state of the art (amine plant)	118.36	85%	\$65.30
BP 1 membrane absorber	100.11	56%	\$43.02
BP 2 membrane desorber	98.67	54%	\$41.50
R&D strategy to meet DO			
1) Module cost from \$80 to \$30/m ²	95.64	48%	\$36.87
2) Advanced solvent	More energy saving		

* In 2011 dollars

BP3: Integrated Absorber/Regeneration and Field Testing

Integrated bench-scale system


System currently being modified for field tests



gti

100-hour integrated membrane contactor absorption/regeneration testing completed

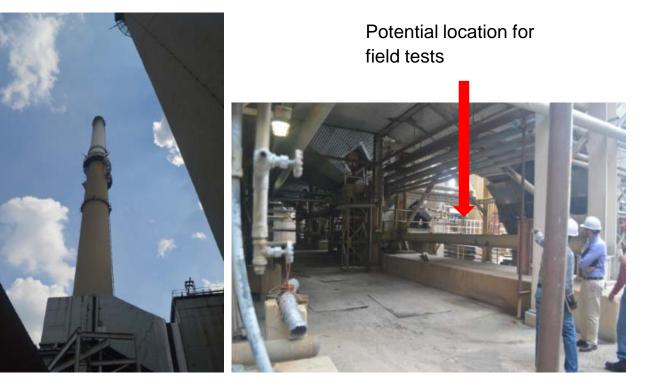
Gas side pressure drop stable and remained less than 0.7 psi (target is less than 2 psi)

Performance can be linearly scaled for field testing

- CO₂ removal rate remained constant as membrane area increased from 1.2 ft² to 4.4 ft²
- Intrinsic CO₂ permeance remained constant as membrane area increased from 1-4 ft² 2-inch to ~250 ft² 4-inch diameter modules
- Contactor performance will be validated in the field

				4-1
		Membrane	Overall mass transfer coefficient for CO ₂	ma ina
Μ	odule*	area, ft ²		
		area, n-	capture at 90% using	fie
			aMDEA solvent, (1/s)	
2	PG285	1.2	1.7	
2	PG471	1.2	1.8	2.
2	PG472	4.4	1.8	m
				te

* 2PG285 was developed in BP1 2PG470 and 471 are recent modules 4-inch diameter module in 8inch shell for field testing


2-inch diameter module for lab testing

Field testing site determined, tests scheduled to start in August, 2013

- Site: Midwest's Will County Station in Romeoville, IL
- Source for the required flue gas and utilities discussed during June 10's site visit

Technology implementation timeline

Time	Development	Module diameter	Projected # of modules*
By 2013	Bench-scale (Current project, Phase III)	4-inch	1
By 2017	1 MWe pilot scale (Proposal submitted to DOE)	8-inch	7
By 2020	25 MM/a domonstration	8-inch	170
By 2020	25 MWe demonstration	30-inch	14

- * Calculated based on:
 - CO₂ flux of 1.2 kg/m²/h
 - Module area:
 - Current Ø8-inch module: 100 m²
 - Projected Ø16-inch module: 400 m²
 - Projected Ø30-inch module: 1400 m²

PoroGen's new facility currently has equipment capacity to produce 1,000 eight-inch membrane modules annually.

Summary

- BP1 membrane absorbers
 - Technical goal achieved: ≥90% CO₂ removal in one stage; gas side pressure drop: 1.6 psi; mass transfer coefficient: 1.7 1/s
- BP2 membrane desorbers
 - Technical goal for CO₂ purity (97%) and CO₂ stripping rate (4.1 kg/m²/h) achieved
 - Economic evaluation indicates a 54% increase in COE
- BP3 integrated absorber/regeneration and field testing
 - A 100-hour, integrated absorber/desorber test completed, and CO₂ removal rate higher than 90% has been achieved
 - Performance improvements continue
 - Testing indicated contactor performance can be linearly scaled. This will be further validated in the field by using 4-inch modules
 - Unit for field tests is under modification, field testing site determined, tests scheduled to start in August, 2013

Acknowledgements

- Financial support
 - DOE-NETL
 - ICCI (Illinois Clean Coal Institute)
 - Midwest Generation
- DOE NETL José Figueroa
- ICCI Debalina Dasgupta

