the Energy to Lead

Hybrid Membrane/Absorption Process for Post-combustion CO₂ Capture

DOE Contract No. DE-FE-0004787

Shiguang Li, Dennis Rocha, Timothy Tamale, Jim Zhou and Howard Meyer, *GTI* Yong Ding and Ben Bikson, *PoroGen*

NETL CO₂ Capture Technology Meeting

August 22, 2011

Introduction to GTI and PoroGen

- Not-for-profit research company, providing energy and natural gas solutions to the industry since 1940s
- Facilities
 - 18 acre campus near Chicago
 - 200,000 ft², 28 specialized labs

- Materials technology company commercially manufacturing products from high performance plastic PEEK (poly (ether ether ketone))
- Products ranging from membrane separation filters to heat transfer devices

PEEK Fiber + Cartridge + Module = $\frac{Se}{s}$

Separation system

Project overview

- **Funding**: \$3,736 K (DOE: \$2,986 K, Cost share: \$750 K)
 - Phase I budget: DOE: \$799 K, Cost share: \$200 K (20%)
 - Phase I spending by 7/31/2011: DOE: \$706 K (88.3%), Cost share: \$167 K (19.2%)
- Performance period: Oct. 1, 2010 Sept. 30, 2013
- Project objective: to develop a cost effective separation technology for CO₂ capture from flue gases based on a PEEK hollow fiber membrane contactor technology
- Project participants:
 - GTI
 - PoroGen

Aker Process Systems Midwest Generation

Phase I (absorption) progress and status

Performance period: 10/1/10-9/30/11

Project performance

- Tasks 1-3: 100% complete; Task 4: 80%; Task 5: 80%, Task 6: 90%
- Milestones 1-6 achieved; 7 is the Phase I report due by 10/30/11

Technical target achieved

Parameters	Target	Achieved value
Membrane intrinsic CO ₂ permeance, GPU	≥ 1,000	>2,000
CO ₂ removal in one stage	≥ 90%	≥ 90%
Gas side pressure drop, psi	≤ 2	1.6
Mass transfer coefficient, (sec)-1	≥ 1	1.7

What is a membrane contactor?

- High surface area membrane device that facilitates mass transfer
- Gas on one side, liquid on other side
- Membrane does not wet out in contact with liquid

- Separation mechanism: CO₂ permeates through membrane and reacts with the solvent; N₂ does not react and has low solubility in solvent
- Comparison to conventional membrane process

Membrane technology	Need to create driving force?	Can achieve >90% CO ₂ removal and high CO ₂ purity in one stage?
Conventional membrane process	Yes. Feed compression or permeate vacuum required	No. Limited by pressure ratio, multi- step process required*
Membrane contactor	No. liquid side partial pressure of CO_2 close to zero	Yes.

5

* DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update, May 2011

Process description

Membrane contactor has technical and economic advantages over conventional absorbers

Gas-liquid contactor	Specific surface area, (cm²/cm³)	Volumetric mass transfer coefficient, (sec) ⁻¹
Packed column (Countercurrent)	0.1 – 3.5	0.0004 - 0.07
Bubble column (Agitated)	1 – 20	0.003 - 0.04
Spray column	0.1 – 4	0.0007 - 0.075
Membrane contactor	1 – 70	0.3 – 4.0

Conventional Amine Scrubber Column

Membrane Contactor

Membrane contactor savings:

- Capital cost: 35%
- Operating cost: 40%
- Total operating weight: 47%
- Footprint requirement: 40%
- Height requirement: 60%

Data by Aker Process Systems

Technical and economic <u>challenges</u> of applying membrane contactor to existing PC plants

- Performance overall mass transfer resistance consists of three parts
 - Minimize each resistance
- Durability Long-term membrane wetting in contact with solvent can affect performance
 - Improve membrane hydrophobicity
- Contactor scale-up and cost reduction
 - Make larger diameter membrane module and reduce membrane module cost
- Particulate matter
 - Determine its impact on membrane lifetime in Phase III

- Overall mass transfer coefficient K (cm/s)
 - In the gas phase, kg
 - In the membrane, k_m
 - In the liquid phase, **k**₁
- *H_{adim}:* non-dimensional Henry's constant
- E: enhancement factor due to reaction

PEEK membrane can meet challenges

- Exceptional thermal, mechanical & chemical resistance
- Hollow fiber with high bulk porosity (50-80%), asymmetric pore size: 1 to 50 nm, and thus high gas flux
 - Helium permeance as high as 19,000 GPU
- Super-hydrophobic, non wetting, ensures independent gas & liquid flow under flue gas conditions
- Structured hollow fiber membrane module design with high surface area for improved mass transfer

9

PoroGer

PoroGen has a patented process for preparation of nano-porous PEEK hollow fiber membrane

Hollow fiber morphology, and pore size have been optimized to meet membrane contactor operating requirements

Two types of super-hydrophobic membranes under development

a) Nano-porous PEEK hollow fiber membrane

b) Composite PEEK hollow fiber membrane **Thin layer (0.1 μm) of smaller surface pores**

Asymmetric porous structure

PoroGen

Super-hydrophobic surface not wetted by alcohol

Alcohol droplet

Membrane intrinsic CO₂ permeance exceeded initial target commercial performance

Post-combustion CO₂ capture gas/liquid membrane contactor skid constructed

- Designed for 25 KW equivalents of CO₂ capture (0.5 ton/day)
- <u>Phase I</u>: absorption testing, <u>Phase II</u>: regeneration testing, <u>Phase III</u>: Integrate absorption and regeneration, ship to Midwest Generation for field testing

Bench-scale membrane contactor CO₂ capture performance demonstration

- <u>Feed</u>: use of temperature and pressure conditions after FGD, and simulated flue gas compositions (saturated H₂O, SOx, NOx, O₂)
- Membrane module: tested performance can be linearly scaled to commercial size modules
- <u>Solvents</u>: commercial aMDEA (40 wt%) and activated K₂CO₃ (20% wt%), test of advanced solvents planned
- Use of design of experiment test matrix: totally over 140 tests, gas flow rate: 1-10 L/min, liquid flow rate: 0.1-1 L/min

PoroGei

Module for lab testing (Ø2" x 15" long, 1m²)

Phase I technical goal achieved with commercial aMDEA and K₂CO₃/H₂O

Parameters	Goal	aMDEA	K ₂ CO ₃
CO ₂ removal in one stage	≥ 90%	90%	94%
Gas side ΔP , psi	≤ 2	1.6	1.3
Mass transfer coefficient,(sec)-1	≥ 1	1.7	1.8

CO_2 removal rate is not affected by O_2 and SO_x contaminants in feed

Module 2PG286

Measured results:

CO ₂ removal	91%
Mass transfer coefficient,(sec) ⁻¹	1.6
Gas side ΔP , psi	1.6
CO ₂ capture rate, kg/h/m ²	0.5

<u>Compared to conventional amine scrubber</u>

 15% less of the inlet SO₂ was absorbed by the solvent. The formation of heat-stable salts will be reduced

Membrane module design and scale-up

PoroGen

Economic evaluation bases

- Membrane cost for commercial size 8-inch modules (\$80/m²)
- 90% CO₂ removal, CO₂ removal at a flux of 0.4 kg/m²/h (equivalent mass transfer coefficient of 1.7 s⁻¹)
- K₂CO₃/water solvent
- Contactor used for absorption only, use of packed column for regeneration
- DOE/NETL-2007/1281"Cost and Performance Baseline for Fossil Energy Plants"

Cost of electricity (COE) and increase in COE

Case	COE, mills/kWhr	Increase in COE
DOE Case 9 no capture	64.00	
DOE Case 10 state of the art (amine plant)	118.36	85%
Phase I status: membrane absorber	98.93	55%
Sensitivity study		
Module cost \$ from \$80 to \$30/m ²	95.64	49%
CO ₂ removal rate † from 0.4 to 1.2 kg/m ² /h	92.24	44%
\$30/m ² module cost + 1.2 kg/m ² /h CO ₂ removal rate	88.95	39%
Phase II regeneration improvements	On trajectory to meet	
	DOE target	
DOE capture target	86.40	35%
roGen		19 Qti

Plans for future testing and development in this project

Scale-up and risk mitigation for commercialization

Technology implementation timeline after this project

Time	Development	CO ₂ capture, Ton/day	Module diameter	Projected # of modules*
By 2013	25 KWe bench-scale (Current project, Phase III)	0.5	8-inch	1 (more than sufficient)
By 2015	2.5 MW/o pilot scalo	50	8-inch	17
		50	50	16-inch
By 2018	25 MM domonstration	500	8-inch	170
		500	30-inch	17 5 170 14

* Calculated based on:

- CO₂ flux of 1.2 kg/m²/h
- Module area:
 - Current Ø8-inch module: 100 m²
 - Projected Ø16-inch module: 400 m²
 - Projected Ø30-inch module: 1400 m²

PoroGen has equipment capacity to produce 8-inch modules for several 25MWe demonstration plants

Summary

Membrane absorbers technical goal achieved

Parameters	Goal	Achieved value
Membrane intrinsic CO ₂ permeance, GPU	≥ 1,000	>2,000
CO ₂ removal in one stage	≥ 90%	≥ 90%
Gas side pressure drop, psi	≤ 2	1.6
Mass transfer coefficient, (sec)-1	≥ 1	1.7

- Feasibility of contactor module scale-up demonstrated
- Phase II is to apply membrane contactor in regeneration step
- Economic evaluation based on Phase I membrane absorber lab testing data indicates a 55% increase in COE

Acknowledgements

- Financial support
 - DOE-NETL
 - ICCI (Illinois Clean Coal Institute)
 - Midwest Generation
- DOE NETL José Figueroa

